

محاسبات عددی یا آنالیز عددی (Numerical analysis) به تنظیم، مطالعه، و اعمال شیوههای تقریبی محاسباتی برای حلّ آن دسته از مسائل ریاضیات پیوسته (در مقابل ریاضیات گسسته) میپردازد که با روشهای تحلیلی و دقیق قابل حلّ نیستند. برخی از مسائل مورد نظر محاسبات عددی به طور مستقیم از حسابان میآید. جبر خطی عددی (بر روی میدانهای حقیقی یا مختلط) و نیز حلّ معادلات دیفرانسیل خطّی و غیر خطّی مربوط به فیزیک و مهندسی از جملۀ زمینههای دیگر برای کاربرد محاسبات عددیست.
از آثار مکتوب بهجامانده چنین برمیآید که گویا نخستین رساله در حساب به معنی امروزی را محمد بن موسی الخوارزمی نوشته است. آوازهٔ وی چنان در اروپا پیچید که واژهٔ الگوریتم را (که از الخوارزمی گرفته شده است) بر روشهای حل مساله در محاسبات عددی نهادند.با پیشرفت رایانهها نیاز به حل مسایل ریاضی به روش عددی بیش از پیش احساس شد. در این هنگام کارایی روشهایی که از قبل توسط نیوتون و اولر ارایه شده بود نمایان شد. ریاضیکارها و دانشگرهای دیگر نیز در این راه پا گذاشتند و روشهایی کاراتر ارایه دادند. به این ترتیب محاسبات عددی شکل نوین خود را یافت. نظر تاریخی آنالیز در قرن هفدهم با ابداع حساب دیفرانسیل و انتگرال توسط نیوتن و لایپ نیتس پایه ریزی شد در قرن هفدهم و هجدهم سر فصل های آنالیزی از قبیل حساب تغییرات،معادلات دیفرانسیل با مشتقات جزئی، آنالیز فوریه در زمینه های کاربردی توسعه فراوانی یافتند و از آنها به طور موفقیت آمیز در زمینه های صنعتی استفاده شد. در قرن هجدهم تعریف مفهوم تابع به یک موضوع بحث بر انگیز در ریاضیات تبدیل شد. در قرن نوزدهم کوشی با معرفی مفهوم سری های کوشی اولین کسی بود که حساب دیفرانسیل و انتگرال را بر یک پایه منطقی استوار کرد.. در اواسط قرن نوزدهم ریمان تئوری انتگرال گیری خود را که به انتگرال ریمان معروف است ارائه داد در اواخر قرن نوزدهم وایراشتراس مفهوم حد را معرفی کرد و نتایج کار خود بر روی سریها را نیز ارائه داد در همین دوران ریاضیدانان با تلاش های زیاد توانستند انتگرال ریمان را اصلاح نمایند . در اوایل قرن بیستم هیلبرت برای حل معادلات انتگرال فضای هیلبرتی را تعریف و معرفی نمود.از آخرین تحولات در زمینه آنالیز می توان به پایه گذاری آنالیز تابعی توسط یک دانشمند لهستانی به نام باناچ نام برد.